Practical session July 3rd, 2018

Gaussian Processes metamodeling, practical session

Exercice 1: Simulation of the trajectories of a Gaussian process whose mean and covariance functions are prescribed

1.a) Let $(Z_t)_{t \in \mathbb{R}}$ be a stationary centered Gaussian process with covariance $C(t, t') = \sigma^2 R(t - t')$. Consider a grid of [0, 1] composed with N = 200 points

- Gaussian covariance: simulate some realizations of $(Z_t)_{t \in \mathbb{R}}$ on the grid with $\sigma^2 = 0.5$ and $R(h) = e^{-\left(\frac{h}{\theta}\right)^2}$. Take $\theta = 0.05$, then $\theta = 0.2$.
- Exponential covriance: simulate some realizations of $(Z_t)_{t \in \mathbb{R}}$ on the grid with $\sigma^2 = 0.5$ and $R(h) = e^{-\frac{|h|}{\theta}}$. Take $\theta = 0.05$, then $\theta = 0.2$.
- Gaussian covariance with a nugget effect: simulate some realizations of $(Z_t)_{t \in \mathbb{R}}$ on the grid with $\sigma^2 = 0.5$ and $R(h) = e^{-(\frac{h}{\theta})^2} + \lambda \delta_0(h)$. Take $\lambda = 0.2$ and $\theta = 0.05$, then $\theta = 0.2$.

Notation: $\delta_O(h) = 0$ for $h \neq 0$, $\delta_0(0) = 1$.

1.b) Let $(Z(x))_{x \in \mathbb{R}^2}$ be a centered stationary Gaussian process with $C(x, x') = \sigma^2 R(x - x')$. Consider a grid of $[0, 1] \times [0, 1]$ composed with $N = 50 \times 50$ points.

- Isotropic Gaussian covariance: simulate some realizations of $(Z(x))_{x \in \mathbb{R}^2}$ on the grid with $\sigma^2 = 0.5$ and $R(h) = e^{-\|\frac{h}{\theta}\|^2}$. Take $\theta = 0.1$.
- Anisotropic Gaussian covariance: simulate some realizations of $(Z(x))_{x \in \mathbb{R}^2}$ on the grid with $\sigma^2 = 0.5$ and $R(h) = e^{-\sum_{i=1}^2 \left(\frac{h_i}{\theta_i}\right)^2}$. Take $\theta_1 = 0.1$ and $\theta_2 = 0.03$.
- Exponential anisotropic covariance: simulate some realizations of $(Z(x))_{x \in \mathbb{R}^2}$ on the grid with $\sigma^2 = 0.5$ and $R(h) = e^{-\sum_{i=1}^2 \frac{|h_i|}{\theta_i}}$. Take $\theta_1 = 0.1$ and $\theta_2 = 0.03$.

Exercise 2: Construction of GP metamodel with a learning sample in dimension 1 We consider the analytical 1D function on [0, 1]:

$$f(x) = \sin(30(x - 0.9)^4)\cos(2(x - 0.9)) + \frac{x - 0.9}{2}$$

Apply the following methodology: **Step 0: Representation of the function on** [0, 1]

• Evaluate *f* on 100 equidistributed points and plot it.

Step 1: Construction of a learning sampleand evaluation of *f* on this learning sample

- Vary the size of the leraning sample from N = 10 to 30 points.
- Vary the nature of the design: equidistributed points on [0, 1], random uniform sample on [0, 1].

Step 2: Estimation of the parameters of the GP metamodel

Let $(Z(x))_{x \in \mathbb{R}^2}$ be a Gaussian process with constant mean and Matern 5/2 stationary covariance. That means

$$R(h) = \left(1 + \frac{\sqrt{5}h}{\theta} + \frac{5h^2}{3\theta^2}\right) \exp\left(-\frac{\sqrt{5}h}{\theta}\right).$$

Construct the metamodel based on *Z* conditionally to the learning sample:

- estimate the parameters of the metamodel;
- compute and plot the metamodel on the test sample;
- compute and plot the MSE on the test sample;
- compute Q^2 on the test sample.

Step 3: adaptive planification

- find the point *x* where the MSE is maximal and add it to the learning sample;
- update the metamodel (estimation of the hyperparameters, construction of the predictor and computation of the MSE);
- Plot the predictor and MSE as in **Step 2**.

Exercise 3: Construction of GP metamodel with a learning sample in dimension 2 We consider the schwefel2D analytical function on $[-200, 200]^2$:

$$f(x_1, x_2) = -x_1 \sin(\sqrt{|x_1|}) - x_2 \sin(\sqrt{|x_2|}).$$

Apply thr following methodology: **Step 0: Representation of the function on** $[-200, 200]^2$

• evaluate *f* on an equidistributed grid with 70×70 points and plot *f*.

Step 1: Construction of a design of experiments (learning sample) and evaluation of f on this design

- vary the size of the learning sample from N = 70 to 100 points;
- vary the type of designs: uniform random design, LHS.

Step 2: Estimation of the parameters of the GP metamodel

Let $(Z(x)_{x \in \mathbb{R}^2})$ be a centered stationary Gaussian process with covariance Matern 3/2. Construct the metamodel based on *Z* conditionally to the points of the learning sample.

- compute and plot the predictor on the test sample;
- plot the error (absolute value) on the test sample;
- compute Q^2 on the test sample.

Exercise 4: Use of a GP metamodel for sensitivity analysis Consider the Ishigami analytical function:

 $f(X_1, X_2, X_3) = \sin(X_1) + 7\sin(X_2)^2 + 0.1X_3^4\sin(X_1)$

with the X_i uniformly distributed on $[-\pi, \pi]$, for i = 1, 2, 3. Step 0: Compute analytically the first-order Sobol' indices

• Show that $S_1 = 0.3139$, $S_2 = 0.4424$, $S_3 = 0$.

Step1: Construction of a DoE and evaluation of *f* on that design

• construct a LHS of N = 70 to 100 points.

Step2: Construction of the GP metamodel and control of its quality in terms of prediction

Let $(Z(x))_{x \in \mathbb{R}^2}$ be a Gaussian process with constant mean and Matern 5/2 stationary covariance. Construct the GP metamodel based on *Z* conditionally to the points in the learning sample.

- compute Q^2 on a test sample;
- compute Q^2 by cross validation on the learning sample.

Step 3: Estimate the Sobol' indices